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Why cognitive vehicular networks?

o Some left for vehicular networks?
o Coexistence of DSRC and WiFi?

B |atest development with spectrum for vehicular applications
m The US: Recent initiative from FCC to expand unlicensed bands for WiFi

Currently assigned
75 MHz to DSRC
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m Europe: 30 MHz at 5.9 GHz
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Why sensing?

B Previously we pointed out some problems with the database lookup
m Example: Latency in DB access

-------
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B Mobility creates diversity
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Mobility model

B Cars are separated by distance passed in a second v - 1s

B Linear formation of M = 1,2,4 or 8 vehicles travels straight with speed v
m rural environment 100 km/h
m urban environment 50 km/h
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Conventional channel modeling approach

1. Average fluctuations in an area “a few wavelengths” in diameter
m  Mean power practically constant

power path loss
shadow fading
small scale fading

2. Decouple channel variations into

1. Large scale fading
o Median path loss:
steady attenuation with log of distance
o Log-normal “shadowing”:
“slow” random variations of power

2. Small scale fading distance from the transmitter
o Fluctuations due to change in phase
of impinging waves

3. Assume independence between the large and the small scale fading
m  \We assume distant primary user and neglect pathdoss
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Channel model

B PU signal: Constant amplitude 4
m Similar to ATSC DC pilot tone in baseband

B Small scale fading 4 (z,t): GSM ver. 05.05
m urban: 6-tap Rayleigh with Jakes Doppler spectra
m rural: 4-tap Rice with Jakes spectra and K-factor 1

- D
B Passing through the time varying filter shadowing
10log, (%) ~ N (O, 52)
() :[A*hs(f;f)]-hl urban: ¢ = 10 dB
rural: o= 3dB y

B Downsampling to 100 kHz and adding thermal noise + 5 dB noise figure
m Common trick to lower the noise floor

r(t) = y()+n(1)
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Correlation taxonomy

B Shadow fading

m decorrelation distance and time D, =v-T,
o 10 murban, 100 m rural
. . ‘ d
m correlation coefficient [Gudmundson 91] D =exp (_ In2- _]
Dl
d=2D,: p<0.5
B Small scale fading
m coherence distance and time | -
— urban
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Regulatory domain requirements for primary detection

B With respect to time
m “Perform sensing every x seconds”
m FCC: Perform sensing at least once every 60 seconds
m Not convenient for high speed mobile devices

B With respect to space
m “Perform sensing if you move by more than y meters”
m FCC: Check spectrum occupancy every 100 meters
m  Convenient for highly mobile secondary devices since independent of speed
m We call it “Decision distance”
o 10 m urban
o 100 m rural

TOYOTA
INFOTECHNOLOGY

CENTER Co., LTD.



(

Scheduling of sensing

B Sensing interval is shorter than small scale fading coherence time T

m Provides statistically invariant (good or bad) channel during sensing

B Sensing period (much) larger than the small scale fading coherence time
m Repeating sensing K times results in quasi-independent local sensing outcomes

coherence
time T,

sensing period
pd ~

~

7

K sensing intervals
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Basic idea: Better utilization of small scale diversity

B Diversity gain does not scale with the number of “diversity branches” K

B We increase number of branches exponentially to compensate
m Easy to do with a moving car in time domain
m Hard to put 10 antennas separated by a meter on a device

log(SNR)
outage
probability G2 > G3 >
GE G,
AWGN K=10 K=3 K=2 K=1
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Energy detection

B Take KN samples of r(¢) to obtain a vector R
m scheduling: N samples in K successions
m benchmark: KN samples in one run

B Compare average to the threshold n

}{1

-
R,R, KNp

<

[{0

B Decide

{ H, : Primary user present

H, :Channel 1s free
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Fusion

B If MorKischanged N is also changed to make fair comparison

B Hard combining
m Combine M local decisions by AND, OR, or simple majority rule

B Soft combining

m EGC Hl
Moo >
> R,R, MKNpy
m=I <
}{0
m MRC
1
u > R,R,
> a,R,R,  MKNpy D ="u
= < > R,R,
HO m=1
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Diversity gain

benchmark 1l W | SNR (dB) color
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Collaboration and scheduling #ofcars | color

B For selected parameters
m in urban environment:
scheduling ~ doubling number of cars
: : ] benchmark |l W 1
® in rural environment: scheduling
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Performance of different fusion algorithms with scheduling

B Soft combining performs well in both environments
m Equal average powers result in EGC being similar to MRC
m In strong fading the sensor with the strongest signal is most likely accurate
o OR rule performs similar to soft fusion
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Space — time tradeoff

B A single sensor achieves the same performance as eight sensors when
covering the same distance

urban environment
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SNR (dB) color

Future work —
-5

B \What creates diversity gain? 0
m  Small and/or large scale fading? 150

m How much gain for different SNRs?

benchmark HHEI
scheduling I

[ one car, urban, only shadowing 1 [one car, urban, only small scale fading
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Conclusion

B Splitting sensing interval into a number of shorter intervals improves sensing
performance through better utilization of diversity

B Soft fusion performs consistently good in rural and urban environment
m For calibrated “equal” sensors EGC as good as MRC

B Due to speed cars can trade space for time to exploit diversity

B \Whether to collaborate or not depends on the regulatory domain requirements
m For decision distance < shadowing decorrelation distance
collaboration must be used
m For decision distance > shadowing decorrelation distance
single sensor can achieve the same performance as collaborating sensors
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Simulation parameters

TOYOTA

Environment Rural Urban
Shadow fading mild severe
standard dev. o | 3 dB 10 dB
decorrelation dist. D,| 100 m 10 m
local area size (m) | 10 A, S5 A,
Small scale fading LOS, GSM rural NLOS, GSM urban
tap delays (us) 0 0.2 0.4 0.6 0 02061624 5.0
relative powers (dB)| O -2 -10 20 | -3, 0 -2 -6 -8 -10
Rice K-factor | 1 n/a
Doppler spectra | LOS: Jakes+5(0.7f....) all taps: Jakes
all other taps: Jakes
Sensor speed v 100 km/h 50 km/h
Carrier frequency f; 700 MHz
Sensing bandwidth 100 kHz
Baseline sensing interval 0.1 ms 1 ms
(N =10 samples) (N =100 samples)

Sensing period 40 ms 80 ms
Decision distance 100 mor 10 m 10 mor 107 m
SNR -10, -5, 0 dB
Sensor link budget -5 dB
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