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ABSTRACT

This research work presents the design and
implementation  of  an  FFT  pruning  block,  as  an
extension of an FFT core for OFDM demodulation,
enabling run-time pruning of the FFT algorithm. The
pruning engine allows any pruning pattern without any
restrictions on the distribution pattern of the
active/inactive sub-carriers, enabling the efficient
implementation of dynamic spectrum access (DSA)
cognitive radios. The system was prototyped on an
ALTERA STRATIX V FPGA in order to evaluate the
performance of the pruning engine. Synthesis and
simulation results showed that the logic overhead
introduced  by  the  pruning  block  is  limited  to  a  10% of
the total resources utilization. Moreover, in presence of
a medium-high scattering of the sub-carriers, the power
consumption of the FFT core was reduced up to 40%.

1. INTRODUCTION

The continuous evolution of services available through the
network has pushed mobile users to increasingly demand
more and more bandwidth. Because of the increasing
bandwidth demand, police makers and communication
technologists had to seek new solutions for resolving the
issues of limited spectrum availability. In fact, the spectrum
is a limited resource and the spectrum utilization will soon
saturate. However, a recent study of the Federal
Communication Commission (FCC) has shown that the
spectrum scarcity is a false problem, which arises from
inefficient spectrum utilization [1]. In fact, from the FCC
study it emerges that the spectrum is poorly utilized across
frequency, space and time. As a consequence, researchers
from industry and academia have developed new paradigms
for mitigating the spectrum utilization inefficiency. One
proposed paradigm for efciently utilizing spectrum is
dynamic spectrum access (DSA) [13].

To realize DSA communications, highly recongurable
wireless platforms are needed in order to provide the
required spectral agility. Flexible and efcient baseband
processing platforms are available through the software-
dened radio (SDR) technology and cognitive radio systems
[12]. These systems can be utilized to enable DSA
communications. Besides the architectural solutions, new
agile communication techniques are required to more
efficiently exploit the DSA concept: conventional wireless
communication systems based for example on frequency
division multiplexing (OFDM), might not possess an
adequate level of spectral agility, required by DSA
communications. As a result, variants of OFDM called non-
contiguous OFDM (NC-OFDM) and Discontinuous-OFDM
(D-OFDM) were introduced [4] [5].

NC-OFDM systems can transmit data across non-
contiguous frequency blocks of sub-carriers turning off the
remaining sub-carriers, which are located within the
spectral vicinity of existing primary user communications,
in order to avoid interference.  One of the main advantages
of OFDM and its variants is that its implementation of
parallel modulated streams of subcarrier data can be
efciently  realized  using  a  Fast  Fourier  Transform  (FFT),
where each FFT point represents an OFDM sub-carrier.
The utilization of NC-OFDM opens opportunities for
efficient implementations of the demodulation/modulation
blocks. In fact, sub-carriers that are turned off are
interpreted by the FFT block as zero-value inputs.
Therefore, FFT pruning algorithms could be utilized for
lightening the computational load of the FFT block, leading
to more power-efficient implementations.

This research work presents the design of an FFT pruning
engine,  as  an  add-on  block  for  an  existing  FFT  core.  The
FFT pruning block allows the elimination of redundant
operations at run-time, enabling an efficient
implementation of a demodulation block for NC-OFDM
systems. The manuscript is organized as follows: Section 2
introduces the theory behind the FFT pruning; Section 3
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analyses the state-of-the art in the design and
implementation of FFT pruning engines; Section 4
describes in detail the proposed FFT pruning engine and its
application to an FFT core; Section 5 and Section 6 present
and discuss the achieved results; finally, Section 7 draws
conclusions and points out future directions.

2. FFT PRUNING THEORY

FFT pruning was introduced by Markel in [1] as an
effective way to reduce the computation complexity of FFT
algorithms whenever in presence of zero-valued inputs.
The idea behind FFT pruning is to reduce the
computational complexity of the algorithm via the
elimination of redundant operations, such as: multiplication
or addition of neutral terms as well as multiplications by
zero factors. In fact, the results of such operations are either
a copy of one of the two operands (multiplication/addition
by neutral elements) or zero (multiplication by a zero
factor) and therefore the mathematical operation can be
pruned without any consequences on the correctness of the
algorithm. To better underline the simplifications that can
be introduced by FFT pruning, Figure 1 presents an 8-point
FFT data-flow and an example of input distribution. In the
particular example, only 2 out of the 8 inputs are non-zero
(x1 and x5). The dashed lines in Figure 1 represent the
operations that can be pruned.

The mathematics behind FFT pruning and its advantages
have been widely studied. As an example, the computation
complexity reduction of DFT and FFT algorithms is
discussed in detail in [2] and [3]. From an implementation
point of view, the challenges introduced by FFT pruning
reside in how to design and implement efficiently the
pruning, without any over complications of the control
plane. Many different implementations of the pruning
algorithm have been proposed.

Alves  et  al.  in  [4]  present  a  pruning  algorithm based  on  a
configuration matrix and an if-then-else statement. The
configuration matrix size is N x log2 N, where N is the FFT
size. Each column of the matrix represents an FFT stage,
while  the  rows  represent  the  input  vector  for  each  FFT
stages. The matrix is a binary matrix: logical 0 corresponds
to a zero-valued input, while logical 1 corresponds to a
non-zero input. The computation of the algorithm is then
based on a conditional execution of the operations on the
basis of the valued stored in the configuration matrix. This
approach is based on an extensive utilization of if-then-else
statements, which potentially limits the advantages of the
complexity reduction.

Figure 1: 8-point FFT data-flow and example of pruning
simplification.

Figure 2: Configuration matrix for the algorithms
proposed in [4][5][6] according to the input distribution
presented in Figure 1.

Rajbanshi et al. in [5] introduce a different configuration
matrix: Rajbanshi’s configuration matrix is composed of
log2 N columns and N/2+1 rows. The first row indicates
how many non-zero inputs are present for each one of the
FFT stages (columns), while the following elements of the
column indicate the actual position of the non-zero inputs.

An improved version of Rajbanshi’s configuration matrix
algorithm is proposed in [6] by Airoldi et al.; the
configuration matrix is reduced in size, leading to a more
embedded-system friendly implementation. The reduction
of the size of the configuration matrix was made possible by
storing in the configuration matrix a butterfly identifier
instead of the position of each element. However, this
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Figure 3: Simplified block diagram of the FFT core and
Pruning engine integration.

 introduced a restriction in the pruning, allowing the
pruning of the butterflies in only the case where both inputs
are equal to zero. The effectiveness of the pruning
algorithm is then reduced but the actual implementation of
the algorithm is simplified, leading to good performance
figures.  To highlight the differences between the presented
algorithms, the configuration matrixes for [4], [5] and [6]
are reported in Figure 2. The matrixes were constructed for
an 8-point FFT and the example input distribution
proposed in Figure 1. From an implementation point of
view, the configuration matrixes proposed in [5] and [6] are
more suitable for software implementations, while the
configuration matrix proposed in [4] can be more
efficiently ported to hardware implementations.

3. RELATED WORKS

Different software-hardware solutions have been proposed
for the implementation of the FFT pruning algorithm. This
section gives an overview of significant research works
related to the efficient hardware implementation of FFT
pruning for cognitive radios applications.

Venilla et al. in [7] present a 64-point FFT/IFFT with
pruning for OFDM-based cognitive radios. The proposed
architecture is implemented on a Field Programmable Gate
Array (FPGA). To provide the required flexibility for the
implementation of the pruning, the work is based on the
dynamic partial reconfiguration provided by FPGA
technology [10]. The architecture implements a radix-2
FFT algorithm. However, no details are given about the
utilization of a configuration matrix for the pruning
selection. The results achieved showed a power reduction of
68% when only 16 out of 64 inputs are non-zero. The
proposed implementation allows the pruning of the input

only for contiguous blocks of 16 inputs at the time,
prohibiting the application of the approach to different
types of scenario. Moreover, the proposed architecture is
tightly bounded to a particular FPGA implementation.

Xu and Lim in [8] propose an FFT pruning design based on
a split radix implementation of the FFT kernel. The
pruning of the input is managed through an N x log2 N
configuration matrix. The matrix is a binary matrix and it
is similar to the one proposed in [4]. However, the elements
of the pruning matrix identify a multiplication and not a
single data input. The analysis of the reduction of the
computational complexity is evaluated for a 1024-point
FFT.  Moreover,  a  hardware  implementation  of  the
algorithm (for a 64-point FFT) is presented, but no power
consumption and resources utilization figures are given.

Chen et al. in [9] introduce an FFT processor for OFDMA
communication systems (e.g. IEEE 802.16e/m and 3gpp-
LTE). OFDMA in respect of OFDM allows multi-modal
transmission utilizing different numbers of sub-carriers
utilization. Therefore, more energy efficient
implementation can be achieved through the use of FFT
pruning. The proposed FFT architecture is able to perform
N-point FFT with N ranging from 128 to 1024. The
pruning algorithm  introduced relies on OFDMA
specifications and therefore is not suitable for cognitive
radios applications, where the dynamics of the inputs could
be more variegated.

 Jang et al. in [15] describe a Synchronous Data Flow
(SDF) architecture for the implementation of a 2048-point
FFT algorithm. The architecture is described in Verilog
HDL and synthetized using Samsung 130nm standard cell
libraries. The analysis of power figures underlines a 22.3%
reduction of power consumption when the zero input ratio
is increased from 30% to 90%.

4. PROPOSED PRUNING ENGINE

The pruning engine proposed by this research work was
designed as an add-on block for an existing FFT core [17].
Therefore, the internal control structure of the FFT core
was left unaltered. Figure 3 presents a conceptual view of
the integration of the FFT core and the pruning engine.
Moreover, because the design of the pruning engine was
not tailored to the particular FFT core utilized, the
proposed solution can be ported to similar types of FFT
cores. The design of the pruning engine is composed of two
parts: 1) the pruning algorithm and 2) the pruning
architecture.
The pruning algorithm defines how the pruning is
performed and on which constraints, while the pruning
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architecture takes care of the generation of the right control
signals  for  the  FFT core,  in  order  to  efficiently  implement
the pruning algorithm.

4.1 Pruning algorithm

The proposed pruning algorithm is based on a pruning
matrix. The pruning matrix was derived from [4] and [6].
In
particular, given an algorithm of N-point FFT, the pruning
matrix is a n × m matrix, where n = log2(N) columns while
m = N/2.  Each  column of  the  matrix  represents  a  stage  of
the
radix-2 FFT and each one of N/2 rows identifies one of the
N/2 butterflies that compose a given stage (row).  The
matrix maps the precise location of each butterfly in the
data-flow. Each butterfly is represented by one bit (one
matrix element), which indicates if the butterfly operation
has  to  be  computed  or  not.  To  better  underline  the
construction of the pruning matrix, Figure 4(a) presents the
pruning matrix for the 8-point FFT example presented in
Figure  1.  The  pruning  matrix  is  stored  into  a  RAM
memory. The storage of the pruning matrix is shown in
Figure 4(b): a single memory word stores the configuration
for up to 32 consecutive butterflies. Finally, the
configuration words steer a clock gating system for the
activation of the butterfly unit and the memory address
generations for the data fetch.

4.2 Pruning architecture

As shown by Figure 3, the FFT core is built around a
computational block named Butterfly Unit. The Butterfly
Unit can compute two butterfly operations in parallel [14].
A simplified schematic view of one of the two butterfly
blocks is given in Figure 5. The figure also highlights the
control signals of the pruning engine (Bfy0_enableX in the
Figure 6). In fact, the pruning control unit (PCU) enables

Figure 4: a) Example of pruning matrix in respect of
example of Figure 1; b) Memory organization for the
storage of the pruning matrix.

Figure 5: Simplified schematic view of one of the two a
butterfly units of the FFT core.

Figure 6: Conceptual view of the Pruning Control Unit
design.

or disables the butterfly operations if both inputs are zero.
In particular, the enable signals are latched only to the
multipliers: the energy consumption of adders is not as
significant as the energy consumed by the four multipliers.
At  each  step  of  the  algorithm,  the  PCU reads  and  decodes
the configurations from the pruning memory and generates
the enable signals accordingly. The whole process is timed
by  the  clock  of  the  FFT  core  in  order  to  keep  the  two
control units synchronized. Indeed, the generation of the
enable signals has to respect the pipeline timing of the
butterfly unit.  Together with the butterfly enables, the PCU
generates other two enable signals, which are connected to
the  two  RAM  memories.  In  fact,  whenever  a  butterfly  is
pruned, the associated reading from the memories is
disabled.  To better emphasize the steps that characterize
the pruning algorithm, Figure 6 provides a simplified view
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of the control flow for the PCU. Initially, the PCU fetches
from the pruning matrix memory the configurations for the
required butterfly operations. The configuration word
serves 32 following butterflies within a FFT plane. For
larger FFT sizes (requiring more than 32-bit configuration
words for each FFT plane) the configuration words are
stored at sequential addresses. In such cases, multiple read
phases from the memory are needed. In the second phase,
the PCU decodes the configuration fetched and generates
the enable signals for the data memory accesses. As an
example, if the first pairs of bits are both zero, then the
calculation of the first two butterflies is avoided.  Thus, the
enable signals for the memories are not generated. Finally,
in the third and last phase, the PCU generates the enable
signals for the butterfly units.

Table 1: Synthesis results of the FFT core and pruning
engine on an Altera STRATIX V FPGA.

4.3 Hardware implementation

The pruning engine together with the FFT core were
prototyped on a Stratix V GS FPGA (device:
5SGSMD5K2F40C2N) in order to evaluate the overhead of
resource utilization introduced by the pruning engine. The
synthesis was carried out utilizing Quartus II (release
v12.1). Beside area overheads, power measurements were
carried out to evaluate the efficiency of the introduced
pruning engine. Details about power consumption are given
in Section 5. The FFT core is able to perform FFT of
different sizes up to 2048-point. Table 1 summarizes the
resource utilization for the FFT core and the pruning add-
on block. As shown by the resource utilization figures, the
pruning engine introduces a logic and memory overhead of
about a 10%. In the Table 1 the memory size implemented
in the architecture are reported.

Figure 7: Analyzed input distribution patterns for the
evaluation of the FFT pruning engine.

5. RESULTS

The joint system composed of FFT core and pruning engine
was evaluated through RTL simulations. In particular, the
computation of a 2048-point FFT was considered. Different
levels of pruning and different pruning distributions were
considered. Figure 7 presents the different input
distributions analyzed. The first pattern (pattern a of Figure
7) is the reference case where the input sequence contains
no zero-inputs. The remaining patterns are divided into two
classes: the first considers a scenario where the transmitters
delete different contiguous sequences of samples (patterns
b,c,d,e,f), while the second sub-set shows a uniform
distribution of zeros patterns (patterns g,h,i,l,m).      These
distribution topologies represent typical working scenarios
in cognitive radio applications, as presented by IEEE
802.22 standard [16]. The estimations of power
consumption were performed through the power analyzer
tool provided by Altera Quartus II. To obtain more accurate
estimations, switching activity files were generated for each
one of the analyzed input distribution patterns. Table 1
collects the performance of the pruned FFT architecture in
terms of power consumption. Moreover, the Table collects
the relative saving obtained via the utilization of the
pruning engine in relation to the reference pattern a. The
reduction of the power consumption mainly depends on
two  factors:  the  number  of  zero  samples,  and  the
distribution topology used. For the patterns b,  c,  d, and f

FPGA resources FFT core Pruning Engine

Logic Combinational
Elements 1057 113

Register 1811 157
DSP blocks 4 0
Memory Size 128 Kbits 11 Kbits
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increasing the length of the zero sequences leads to higher
power savings. Instead, for the patterns belonging at the
Uniform Distribution topology, the percentage of the power
saved is lower than in the first scenario, because the
pruning has a reduced impact on the radix-2 algorithm. In
particular, in presence of low pruning levels (e.g. pattern g)
no power saving is achieved: the advantage of the pruning
is compensated by the power consumption of the pruning
engine.

Table 2: Estimation of the power consumption of the
proposed system for the different operating conditions
analyzed.

6. DISCUSSION OF ACHIEVED RESULTS

The results achieved indicate a significant power savings
introduced by the pruning engine, leading to a more
efficient implementation of the demodulation block in NC-
OFDM application scenarios. Moreover, the proposed
pruning engine is designed as an add-on block and
therefore could be integrated into different FFT cores than
the one utilized in this research work.  The introduction of
the pruning engine does not affect the computation time of
the FFT core. On one hand, this design choice limits the
power saving achieved (more efficient dynamic power
management techniques could be applied), on the other
hand it maintains the original specifications of the FFT
block, without the need to redesign the interface between
the FFT core and the host System on-Chip.

Compared to the power efficiency achieved in [7] the
proposed pruning engine offers a reduced power saving.
However, the work presented in [7] is strictly tided to
FPGA implementations and therefore its application
domain might be limited, while the pruning engine

proposed in this article is not tided to any particular
implementation technology.

In [15] the proposed FFT architecture is not tied to any
particular technology either and was synthetized with
standard cells libraries. The power consumption is reduced
of 22.3% when moving from a 30% to 90% pruning ratio.
No power figures are given for an un-pruned scenario.
However, the relative power savings achieved by the
pruning engine proposed in this article point out a more
efficient implementation of the pruning with power saving
factors up to 41.8%.

7. CONCLUSIONS

This research work presented an FFT pruning engine as an
adds-on block for FFT core architectures. The pruning
engine improves the power efficiency of the FFT core
without significantly modifying its internal structure and
leaving unaltered the FFT core interface. Synthesis and
simulation results have shown that for a 10% increase in
resource utilization the pruning engine is able to deliver
power savings up to 40% in medium high pruning
scenarios. Comparisons with related works have shown the
competitiveness of the proposed pruning engine.

Future works will cover two directions: 1) ASIC
implementation of the proposed pruning engine and 2) a
merged implementation of the FFT core and pruning
engine, in order to enable the utilization of dynamic power
management techniques, such as dynamic frequency and
voltage scaling to further improve the power efficiency of
the system.
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